Abstract No. goel752

Synthesis and Characterization of Site-Isolated Hexarhodium Clusters on Titanial Powder

J. Goellner and B.C. Gates (U. California Davis)

Beamline: X11A

 $[Rh_6(CO)_{16}]$ was prepared on the surface of TiO_2 (calcined at 200 or 400 $^{\circ}$ C) by deposition from n-hexane solution and by a surface-mediated synthesis from TiO_2 -supported $[Rh(CO)_2(acac)]$ in the presence of CO at 1 atm and 100 $^{\circ}$ C. The cluster preparation and subsequent decarbonylation by treatment in He or H_2 were characterized by infrared and extended X-ray absorption fine structure (EXAFS) spectroscopies. Deposition from solution gave aggregated $[Rh_6(CO)_{16}]$ on TiO_2 ; removal of the carbonyl ligands led to destruction of the Rh_6 frame and sintering to give rhodium aggregates. In contrast, the reductive carbonylation of TiO_2 -supported $[Rh(CO)_2(acac)]$ gave site-isolated TiO_2 -supported $[Rh_6(CO)_{16}]$ in high yield, paralleling the chemistry of rhodium carbonyls in neutral solutions and on neutral surfaces. Removal of the carbonyl ligands from the site-isolated clusters by treatment in H_2 at 300 $^{\circ}$ C led to rhodium aggregates, but decarbonylation in He at 300 $^{\circ}$ C gave site-isolated Rh_6 clusters on the TiO_2 . The first-shell Rh–Rh coordination number of these clusters was 4.4 ± 0.4 with a bond distance of 2.64 ± 0.03 Å. Thus, the clusters formed by decarbonylation of site-isolated TiO_2 -supported $[Rh_6(CO)_{16}]$ are represented as octahedral Rh_6 (which has a Rh–Rh first-shell coordination number of 4). EXAFS spectroscopy indicates that the decarbonylated Rh_6 clusters on TiO_2 calcined at 200 $^{\circ}$ C have a small amount of carbon bonded to them, but no such ligands were indicated in the spectra of the Rh_6 clusters on TiO_2 calcined at 400 $^{\circ}$ C.